

Carbohydrate Research 260 (1994) 319-321

Note

Synthesis of phenyl 2-azido-2-deoxy-1-selenoglycosides from disaccharidic glycals

Francisco Santoyo-González *, Francisco G. Calvo-Flores, Pilar García-Mendoza, Fernando Hernández-Mateo, Joaquín Isac-García, Rafael Robles-Díaz

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain

(Received November 15th, 1993; accepted in revised form February 18th, 1994)

Key words: Disaccharides; Glycals; Azidophenylselenation; Selenoglycosides

Phenyl selenoglycosides have been recognized as versatile glycosyl donors for the construction of glycosidic bonds [1]. In search of new donors of this kind, we have recently applied to glycals the azidophenylselenation of alkenes developed by Tingoli et al. [2]. Thus, reaction of a number of monosaccharidic glycals with (diacetoxyiodo)benzene, sodium azide, and diphenyl selenide regiospecifically produced phenyl 2-azido-2-deoxy-1-selenoglycosides in high yields and with a high degree of stereoselectivity [3]. These new azido derivatives should be valuable as synthons in 2-amino-2-deoxy-glycoside synthesis. We have now extended this chemistry to disaccharides, namely, the peracetylated glycals of cellobiose [4] (1a), lactose [5] (1b), and maltose [6] (1c) in order to prepare compounds potentially useful for block synthesis of oligosaccharides containing 2-amino-2-deoxy sugars.

The reactions were performed using the conditions previously described [3]. In all cases, an inseparable mixture of the corresponding phenyl 2-azido-2-deoxy-1-selenodisaccharide anomers 2 and 3 was obtained. These mixtures gave satisfactory microanalyses for $C_{30}H_{37}N_3O_{14}Se \cdot H_2O$. The major product in each case was the α anomer $2\mathbf{a}-\mathbf{c}$ (δ H-1 at 5.72 ± 0.2 , d, $J_{1,2}$ 1.5 \pm 0.2 Hz; δ C-1 at 82.0 ± 0.3), and the minor product was the β anomer $3\mathbf{a}-\mathbf{c}$ (δ H-1 at 5.55 ± 0.07 , d, $J_{1,2}$ 3.1 \pm 0.5 Hz; δ C-1 at 89.9 ± 0.1). The proportions of anomers in the mixtures were determined by 1 H NMR as $\approx 2:1$ for $2\mathbf{a}/3\mathbf{a}$, $\approx 13:1$ for $2\mathbf{b}/3\mathbf{b}$, and $\approx 6:1$ for

^{*} Corresponding author.

2c/3c. In all cases, the reactions were slower and afforded lower yields (22% for 2a/3a, 45% for 2b/3b, and 33% for 2c/3c) as compared to monosaccharidic glycals [11], but the same regiospecificity and similar stereoselectivity were observed. Research directed toward the use of these compounds as glycosyl donors is in progress in our laboratory.

1. Experimental

General procedure.—A mixture of glycal (1 mmol), diphenyl diselenide (2.3 mmol), sodium azide (5.5 mmol), and (diacetoxyiodo)benzene (2.6 mmol) in dry CH_2Cl_2 (50mL/mmol) was stirred under Ar at room temperature. The reaction time was 21 days for 1a and 8 days for 1b-c. The mixture was poured into satd aq NaHCO₃, and extracted with CH_2Cl_2 . The organic layer was washed with water, dried, and evaporated. The crude product was purified by column chromatography using 4:1 ether-hexane as eluent.

Phenyl 3,6-di-O-acetyl-2-azido-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopy-ranosyl)-1-seleno-α,β-D-mannopyranoside (2a and 3a).—IR: v^{nujol} 2110 (N₃), 1744 (CO) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.59 and 7.30 (2 m, 5 H, Ph), 5.72 (d, J 1.7 Hz, H-1 of 2a), 5.54 (t, J 9.9 Hz, H-3' of 3a), 5.47 (d, J 3.6 Hz, H-1 of 3a), 5.32 (dd, J 9.1 and 3.7 Hz, H-3 of 2a), 5.17 (t, J 9.4 Hz, H-3' of 2a), 5.09 (t, J 9.8 Hz, H-4' of 3a), 5.08 (t, J 9.7 Hz, H-4' of 2a), 4.96 (dd, J 9.4 and 7.9 Hz, H-2' of 2a), 4.91 (dd, J 10.2 and 3.6 Hz, H-3 of 3a), 4.74 (d, J 8.0 Hz, H-1' of 3a), 4.57 (d, J 7.9 Hz, H-1' of 2a), 4.40 (dd, J 11.9 and 1.9 Hz, H-6 of 2a), 4.42–3.97 (several m, H-4-6 of 2a and 3a and H-2 of 3a), 4.29 (dd, J 3.7 and 1.9 Hz, H-2 of 2a), 3.78–3.75 (m, H-5' of 3a), 3.72 (ddd, J 9.9, 4.9, and 2.2 Hz, H-5' of 2a), and 2.13–2.00 (10 s, AcO); ¹³C NMR (125 MHz, CDCl₃): δ 100.8 (C-1' of 2a and 3a), 90.0 (C-1 of 3a), 82.3 (C-1 of 2a), 74.3, 72.7, 71.7, 71.4, 71.1, 67.8, 63.4, 61.9, 61.7, (C-2-6,2'-6') of 2a), 71.9, 70.8, 69.6, 68.3, 67.1, and 61.7 (signals of minor intensity corresponding to 3a).

Phenyl 3,6-di-O-acetyl-2-azido-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopy-ranosyl)-1-seleno-α,β-D-mannopyranoside (2b and 3b).—IR: v^{nujol} 2109 (N₃), 1750 (CO) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.52 and 7.32 (2 m, 5 H, Ph), 5.71 (d, J 1.5 Hz, H-1 of 2b), 5.55 (d, J 3.6 Hz, H-1 of 3b), 5.37 (d, J 3.6 Hz, H-4' of 2b), 5.32 (dd, J 9.0 and 3.8 Hz, H-3 of 2b), 5.16 (dd, J 10.2 and 8.1 Hz, H-2' of 2b), 4.99 (dd, J 10.2 and 3.7 Hz, H-3' of 2b), 4.62 (d, J 7.5 Hz, H-1' of 3b), 4.55 (d, J 8.0 Hz, H-1' of 2b), 4.40–3.90 (several m, H-4–6,5',6' of 2b and 3b and H-2 of 3b), 4.30 (bd, J 3.5 Hz, H-2 of 2b), and 2.16–1.97 (10 s, AcO); ¹³C NMR (125 MHz, CDCl₃): δ 101.2 (C-1' of 2b and 3b), 89.8 (C-1 of 3b), 82.2 (C-1 of 2b), 74.1, 71.6, 71.4, 70.8, 70.5, 68.9, 66.5, 63.1, 62.0, 60.9 (C-2–6,2'-6' of 2b), 71.3, 70.7, 66.6, and 61.0 (signals of minor intensity corresponding to 3b).

Phenyl 3,6-di-O-acetyl-2-azido-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopy-ranosyl)-1-seleno-α,β-D-mannopyranoside (2c and 3c).—IR: v^{KBr} 2109 (N₃), 1747 (CO) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.60 and 7.32 (2 m, 5 H, Ph), 5.74 (d, J 1.7 Hz, H-1 of 2c), 5.62 (d, J 2.6 Hz, H-1 of 3c), 5.55 (d, J 4.1 Hz, H-1' of 2c), 5.54 (d, J 5.0 Hz, H-1' of 3c), 5.41 (dd, J 10.4 and 9.6 Hz, H-3' of 2c), 5.38 (dd, J 10.3 and 9.6 Hz, H-3' of 3c), 5.23 (dd, J 9.0 and 3.8 Hz, H-3 of 2c), 5.20 (dd, J 4.3 and 7.8 Hz, H-3 of 3c), 5.08 (t, J≈ 9.8 Hz, H-4' of 2c), 5.07 (t, J≈ 10.0 Hz, H-4' of 3a), 4.90 (dd, J 10.5 and 4.1 Hz, H-2' of 2c), 4.89 (m, H-2' of 3c), 4.50–3.98 (several m, H-4-6 of 2c and 3c and H-2 of 3c), 4.29 (dd, J 3.7 and 1.7 Hz, H-2 of 2c), and 2.18–1.96 (10 s, AcO); ¹³C NMR (125 MHz, CDCl₃): δ 95.7 (C-1' of 2c and 3c), 89.8 (C-1 of 3c), 81.8 (C-1 of 2c), 74.3, 71.2, 70.4, 70.1, 69.3, 68.4, 67.9, 62.7, and 61.3, (C-2-6,2'-6' of 2c), 73.5, 71.7, 70.8, 69.8, 69.4, and 68.3 (signals of minor intensity corresponding to 3c).

Acknowledgments

We thank the Dirección General de Investigación Científica y Técnica for financial support (PB89-0467 and PB92-0936) and Dr. J. Fuentes-Mota (University of Sevilla) for the recording of the NMR spectra.

References

- J. Rothermel and H. Faillard, Carbohydr. Res., 208 (1990) 251-254; S. Metha and B.M. Pinto, Tetrahedron Lett., 32 (1991) 4435-4438; S. Metha and B.M. Pinto, J. Org. Chem., 58 (1993) 3269-3276; H.M. Zuurmond, P.A.M. van der Klein, P.H. van der Meer, G.A. van der Marel, and J.H. van Boom, Recl. Trav. Chim. Pays-Bas., 111 (1992) 365-366.
- [2] M. Tingoli, M. Tiecco, D. Chianelli, R. Balducci, and A. Temperini, J. Org. Chem., 56 (1991) 6809-6813
- [3] F. Santoyo-González, F.G. Calvo-Flores, P. García-Mendoza, F. Hernández-Mateo, J. Isac-García, and R. Robles-Díaz, J. Org. Chem., 58 (1993) 6122-6124.
- [4] M. Bergmann and H. Schotte, Ber., 54 (1921) 1564-1572; W.N. Harworth, E.L. Hirst, H.L. Streight, H.A. Thomas, and J.I. Webb, J. Chem. Soc., (1930) 2636-2644.
- [5] W.N. Haworth, E.L. Hirst, M.M.T. Plant, and R.J.W. Reynolds, J. Chem. Soc., (1930) 2644-2653.
- [6] W.N. Haworth, E.L. Hirst, and R.J.W. Reynolds, J. Chem. Soc., (1934) 302-303.